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Abstract. The electromotive force (EMF) of liquid Hg-Na alloys was measured in detail below
15 at. % Na as functions of Na concentration and of temperature. On the basis of observed
EMF values, thermodynamic functions of mixing were obtained at 398 K and 448 K. At 2—
8 at.% Na anomalous changes were observed in the concentration dependence curve of the
excess partial molar entropy, SE; (i = Na or Hg), and on that of the partial molar enthalpy
of Na, HE x,. These anomalies indicate higher-order correlation effects arising from the
chnaracterizt)ic changes in the concentration derivatives of n-body (n = 2) correlation function
Zapy.. (88apy.. [9C)v. T.cjiey» Which could be derived explicitly to be the function of the higher-
order (n + 1)-body correlation function g{s; 2 .

1. Introduction

For liquid Hg-based alloys containing the alkali metals Tl or In, in the dilute solute
concentration range, anomalous behaviours have been observed in the concentration
dependence curve (cDC) of temperature derivative of electrical resistivity p, 9p/d T, and
thermoelectric power Q, 8Q/d T (Itami et al 1982, 1983, 1984), and on the cDc of the
thermal expansion coefficient ap (Sato et al 1982, Morikawa et al 1986, 1987). These
temperature derivative anomalies have been interpreted as being derived from higher-
order correlation (HOC) effects of anomalous behaviours of higher-order correlation
functions that were included in the theoretical expression of each property (Itami ef al
1982).

In a recent paper (Morikawa et a/ 1986) on liquid Hg-T1 and Hg-In alloys it was
found that broad humps appeared at a few at. % of the solute (Tl or In) on the cpC of
the excess partial molar entropy of the solute, S§g,. Values were obtained from the
compilation by Hultgren et al (1973); their data were obtained by electromotive force
(EMF) measurements. We also suggested a close relation between the humps and HOC
effects. From this point of view it is interesting to study the excess partial molar entropy
of component i (i = Na or Hg) of liquid Hg-Na alloys, SE, because the Hg-Na system
typically shows Hoc effects on electronic properties (Fielder 1967, Itami er al 1986) and
ap (Morikawa et al 1987), and the EMF can be measured accurately as a function of Na
concentration. This is controlled precisely by the coulombic titration using a 8”-alumina
separator (Hsueh and Bennion 1971, Ishiguro et al 1982).

0953-8984/89/315217 + 11 $02.50 © 1989 IOP Publishing Ltd 5217



5218 Y Morikawa et al

The structure and thermodynamic properties of liquid Hg-Na alloys have already
been discussed with the use of results of EMF measurements (Iverson and Recht 1967,
Antoin 1967, Ishiguro ez al 1982). Nonetheless, we need accurate EMF values in the Hg-
rich region as functions of concentration and temperature in more detail to discuss HOC
effects on the concentration dependence of SE (i = Na or Hg) of this system.

In this study, such detailed EMF measurements of liquid Hg-Na alloys were made in
the Hg-rich region and the results are discussed from the point of view of HOC effects
based on the theoretical expression of entropy due to the cluster expansion theory of
Faber (1972). The theoretical expression of the concentration derivative of n-body
correlation functions at constant volume, which play an important role in this study, were
explicitly derived as a function of (# + 1)-body correlation functions (see Appendix).

2. Experimental

The EMmF of liquid Hg—Na alloys was measured using a #’-alumina concentration cell, in
which the "-alumina of a Na™ selective conductor was set as a separator (see Tamaki
and Cusack 1977). The schematic layout of the EMF cell was as follows:

W wire, liquid Na|f"-aluminalliquid Hg-Na, W wire. (1)

The f"-alumina tube was purchased from Nippon Tokusyu Togyo Co Ltd. The purities
of mercury and sodium were 99.997% and 99.98%, respectively. Details of the cell
assembly will be shown elsewhere.

The EMF measurements were carried out for 28 samples with different concentrations
below 15 at.% Na in a vacuum. The Na concentration in the alloys was changed by
coulombic titration with a constant current. The concentrations thus determined were
in good agreement with that determined by the chemical analysis using acid-based
titration. The coulombic titration time was adjusted by a countdown digital timer with
a precision of 0.01 s. The current density was kept below 0.004 A cm™2,

The EMF was measured by a digital voltmeter (YEW model 2051A precision digital
multimeter) at 25 temperatures between 373 K and 473 K. The temperature was con-
trolled within +0.03 K in a silicone oil bath.

3. Experimental results

Figure 1 shows several examples of the temperature dependence of the observed EMF
for liquid Hg-Na alloys. The EMF was detected with a precision of £0.02mV. The
results are in good agreement with previous ones. Detailed descriptions of the present
experimental numerical data as functions of temperature and concentration will be given
elsewhere.

4. Procedure for evaluating thermodynamic functions

The observed value of EMF, ¢, is related to the partial molar Gibbs free energy of Na
relative to the pure liquid Na, AGp y,, as follows:

AGp n, = —Fe )

where Fis the Faraday constant.
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Figure 1. Examples of temperature dependence of observed EMF for liquid Hg-Na alloys.

Excess partial molar quantities—the excess partial molar Gibbs free energy, entropy
and enthalpy of Na, GEy,, SEw, and HE y,—were calculated using relation (2), as
follows:

G5 e = AGpn, — RTInxy, = RTIn yy, (3)
- aGENa 9 In yy,
sEa=—< ' ) = -RI1 a—RT( > 4
PN 0T ) perucns n YN 3T ), 4
7E SE GE 2 (910 Vv
Hpna = Gbna + TSpna = —RT (5)
’ ~ * 9T/ p

where vy, Is the activity coefficient of Na, x; is the atomic fraction of species i (i = Na or
Hg), ¢; the mole number of species /, T the absolute temperature, P the pressure and R
the gas constant.

From the Gibbs-Duhem relation we can obtain the excess (integrated) quantity of
the system per mole, A §, and its partial molar quantity of Hg, A§,, for a given property
A (the Gibbs free energy G, entropy S, or enthalpy H) by the following relations

Afn) =0 =x [ A”—(x——)—)dx ®)
A_E,Hg(xNa) = [AEI(xNa) - xNaAE,Na(xNa)]/(l - xNa) (7)

where A5 y, is the excess partial molar quantity of Na. The calculation was carried out
using the experimental equation for A y, (xy,), which was obtained by the least-squares
method on the basis of the present observed values of .
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5. Results

The In yy,, evaluated from equations (2) and (3) using the experimental values of &,
could be expressed as a fourth-order polynomial function of T at each concentration.
Coefficients in these polynomials were detemined by the least-squares method for 10
experimental values of In yy, within +15 K around the temperature of interest, namely
398 K or 448 K. In figure 1 are shown typical examples of ¢ for liquid Hg-Na alloys as a
function of temperature. Figures 2(a)—(c) indicate smooth changes in the cpcs of G¥,
GF na and GF gy, , respectively. B )

Figure 3(a) shows that the cDC of S changes monotonously. S§ n, and S§ y, are
plotted in figures 3(b) and (c), respectively. Figure 3(b), in which previous data are also
plotted, shows that the present values of S, are in good agreement with those of
Ishiguro et al (1984), at least in the concentration range studied here. It should be noted
that spoon-shaped depressions are found at 2-8 at.% Na on the cbc of 8§ i, , (figure
3(c)); the depth of these spoons are substantial compared with the range of experimental
error (less than £0.04J K~! mol™! at 5 at.% Na). Moreover, broad upheavals are
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observed in the cDC of S§ x, at 2-8 at.% Na, as shown in figure 3(b). The height of the
upheavals also exceeds the range of experimental error (less than +0.1J K" mol ™! at
5 at.% Na). We note that such upheavals of SE y, were also observed around 5 at. % Na
inpreviousdata {Antoin 1967, Iverson and Recht 1967), and the origin of these upheavals
may be common to that of humps at a few at. % solute (In or T1) observed on the cDC of
SE 1 for liquid Hg-In alloys and on that of SE 4 for liquid Hg-TI1 alloys, which were
shown in figure 3 of Morikawa et a/ (1987).

Figure 4(a) indicates that the cDc of HE; decreases smoothly. In figure 4(b), broad
upheavals also appear at 2-8 at.% Na for HE Fna at 398K and 448 K. The range of
experimental error for HE y, is less than +£0.07 kJ mol ™" at 5 at.% Na. Errors in H5 P Na
are therefore small enough to consider upheavals in the ¢DC of HP Na as substantial
anomalies. In figure 4(c), the tendency to form a depression may be observed on the
coc of HE g at 8 at.% Na at 398 K, although this is within the reproducibility of the
experimental points (see, e.g., the two points at xy, = 0.075).

6. Discussion and conclusions

The characteristic aspects of ﬁgures 2-4 are (a) spoon-shaped depressions on the cDC of
the excess molar entropy of Hg, S§ g and upheavals observed on those of SE F.na» (B) the
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Figure 4. (a) Excess molar enthalpy of mixing,
HY, for liquid Hg-Na alloys: O this work. (b)
Excess partial molar enthalpy of Na, H§ y,, for
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HY% g, for liquid Hg-Na alloys: O this work.

tendency of upheavals on the cpc of H5 ,, (c) smooth changes in the cDC of integrated
quantities such as Gk, S& and HE;.

6.1. Anomalies for S5 (I = Na or Hg)

It is necessary to give the theoretical expression of the excess partial molar entropy of
component 1 (1 = Na or Hg). Using the definition of the excess entropy of mixing &
and the excess molar entropy S%;, the excess partial molar entropy S ; can be written
as follows:

SE. = (8SE/dc1)p1.cs

(8)
=8% + (c1 +¢2)(08S%/0¢) p1cs ©)

where
S = SE/(c; + ¢3) = SH = 2 x;(Shy — Rlnx,). (10)

In these equations Sg'® is the molar entropy of alloys and $?), is that of component i in



Effects on thermodynamic properties of liquid Hg—Na 5223

the pure state. The expression of entropy of a multi-component liquid was given by
Faber (1972) based on the cluster expansion method. Following this approach, the molar
entropy of a binary liquid, S§'°¥, can be given as

Sﬁlloy=_2inlnxi+2xiS;,M+22xl‘xj‘sl{j+222xixix1(*s;jk+--. (11)
i - I i j ok
with
S} @ 2
—Nk}B 2!V2,[8 (IRap,) In g3 (|Ry g,) dRa;B; -
Sik

* Nkg = 3’V3dea,ﬁ] dRﬁ//kg,],c (Rap;» Rpjv)

3)
gijk (sz,ﬁj Rﬁ/}'k)

g;;)(]Ralﬁ/l)g(z) lRﬁ,ykl)ga)(lRamk *Raiﬁj))'

In these equations, kg is the Boltzmann constant; N (=(c; + ¢,) X Na; Nais Avogadro’s
number) is the total number of particles of the system contained in the volume V;
S/ v is the entropy of component i in the pure state which has the same N particles in
the same volume as in the alloy state, and g ) is the three-body correlation function
amongspeciesi,jand k, andRaﬁ 1ngl(}2) (]Raﬂ |)1sequalt0R — Rg,, where R, represents
the position of &;th ion of species i. Equatlons (11)—(13) indicate that SE depends on n-
body (n = 2) correlation functions. The mole number derivative of S, the second term
of equation (9), is written as

X In (13)

E I r—
— = - [x; (S —Rlnx; 14
<3C1 P.T.c ¢t JP.Tes (5. ) PT.c (14)
where
asﬁlloy) (asﬁlloy> _
= + vy Vp . 15
( 9¢1 /P Tes 91 /v Ty Yv¥es (15

In equation (15), the partial molar volume of species 1, Vp ;, was derived as a function
of pair-correlation functions by Buff and Brout (1955). Note that the thermal pressure
coefficient yy is connected to the temperature derivative of pair-correlation function
(2) (agl” /3T)y, which is expressed with three- and four-body correlation functions
(Itam1 et al 1982).
From equation (11), the first term of equation (15) takes the form

aSQ“O-V> [ ( ax;
- > Rx, lnx)} +EK—’> ; ]
( acy /v 1., dcy \ V.T.es 1 L\BCL/ v Tes M

dx;x; a8}
+2E[(58) sivnn(3), ]
9¢1 /v.T.cs ¢t/ v.T.cs
d aS};
+EEZ[< xxx") S;,-k+x,-x,xk< f") }+ (16)
V.T,c2 V.T.ca

dcq 9¢,q

In this equation the mole number (c,) derivatives of x;, x;x;, x;x;X, etc., can be easily
evaluated using the definition x; = ¢;/(c; + ¢»). Equation (16) indicates that the mole
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number derivative of S{{'®¥ is also a function of the mole number derivatives of the n-
body {n = 2) correlation functions g,(]’}() , (agf‘j’,?m /9¢1)v.1.c,, in addition to the n-body
(n = 2) correlation functions themselves.

Here we remember the characteristic features of the present experimental results
for the entropy of liquid Hg—Na alloys These are the smooth variations in SE and the
anomalous behaviours of S§ v, and SF 15, As can be seen from equation (11), anomalous
behaviours of S may be derived from terms with Si» Six» etc., if they are present.
Therefore, it may be assumed that S, S/, etc., may change smoothly with variations
inxy,. On the other hand, both partial molar entropies, S x, and SE Hg» €an be expressed
theoretically by the yy, term and mole number derivatives (855/6¢;)v ey
(88 5#/9¢1) v T.c,» €tC., in addition to S}, Si, etc., themselves (see equations (15) and
(16)5 Therefore, these anomalous behaviours of S§ P na and SE P.Hg MAY result from the
mole number derivatives (as,,/acl)v T (6Sl]k/ac1)v 7,c,» €tC., in addition to the yy,
term. The (ag,,k ./3¢1)v.1.c, in these mole number derlvatlves can be considered to be
a generating function of higher correlation functions g‘m +i np) @nd g}, 1rn; .1/ (see Appen-
dix). The Vy, also contains HOC functions, such as three- and four-body correlation
functions, as described above. Therefore, anomalies in S§ £ na and SE ng May be derived
from the anomalous behaviours of these HocC functions. Needless to say, SE itself
contains HOC functions, as can be seen in equations (11)-(13), and anomalies should be
present if the anomalous behaviours are present in the HOC functions. However, from
the experimental point of view, the partial quantity Sy, is measured first and the
integrated quantity SE is evaluated by the integration operation ofequation (6). Because
of this mtegratlon operatlon rather small anomalies in Sy, may disappear in Sf;.
Anyway, the S§ v, and the S§ ug containing the Vy, and the generating function of HOC
functions (ag(") /8¢1)v.1.c, are more abundant in informations of HOC functions than
SE

6.2. Anomalous trends for H x,

The excess partial molar enthalpy of 1 (1 = Na or Hg) is defined by

dAH 9 HAY e HYm
= AH =( > =< > —E( ' ") 17
HE, Pl act / p.1.cs ¢y /pTes i 9C1 /Py an

where H?; is the enthalpy per mole of component i in the pure state, and HA is the
enthalpy per mole of the alloys. (0 H*" /ac,) p 1., can be expressed in the same way as
equation (15), as follows:

aHAlloy) (aEAlloy> _
= + TyyVp . ‘ 18
( ¢y /P T, ¢, /v.1.en Yv¥e. (18)

EAY in equation (18) is the internal energy of liquid alloys, expressed as
2
ENr = iNky T + Nug + {0N*/V) 2 X Xxix) f #(Ros)8y (Rog)) dR g,
i o«
(19)

where uyisthe structure;independent energy of the system, and u;(R) is the pair potential
of the i—j pair.

From equations (18) and (19) itis easy to show that (9 E AlleY /9¢1) v 1.¢, 18 the function
of [4gP(R)/dc]v. 1., Note that the excess enthalpy of mixing under constant pressure,
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HE, HE = AH = AE + pAV, contains information on only the pair-correlation func-
tions, because AE and AV are properties which are represented only by pair-correlation
functions (Buff and Brout 1955). The smooth concentration dependence of HY in figure
4(a) indicates that these pair-correlation functions may change smoothly with increases
in Na concentration. Therefore, the hump in the cDC of Hpy, may come from
[agf)(R)/acl]V T.c, in the first term of equation (18) and [ag,)(R)/a T]y in yy (see
equation (18)), in which HOC functions are included as described above. _

No anomaly is found for G§ |, although the excess partial Gibbs free energy G§ , is
connected with HE ; and SE 5.1, both of which are functions of the HOC functions. The HOC
effects on GE | may be eliminated by the mutual cancellation between the HOC effects
on Hf | and those on S§ ;.
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Appendix: The mole-number derivative of n-body correlation function

Buff and Brout (1955) derived the concentration derivative of the n-body correlation
function g‘,,l‘,, »l...|n,| At constant pressure for the v-component system. Here we describe
the derivation of the concentration derivative of the n-body correlation function
gwm at constant volume on the basis of their method for the two-component system;
n, is the number of particles of species i (i = 1 or 2) included in the assembly w1th n
particles of 1nterest (i.e., n=n, + n,), and |n,| denotes an array of n; letters of ‘’. For
example, gwn21 means g§1)1 when n; = 3 and n, = 0, and gm whenn, =2andn, =1.

First we consider the binary mixture containing N; particles of species 1 and N,
particles of species 2in volume V. If the systemislarge enough to consider thelimit V —
and of N| + N, = N— o despite a finite number density N/V, the n-body correlation
function of the grand canonical ensemble for a binary mixture is defined by

1 > z{ z52
nilng| = Tp32) 7! E
Biminal = (P11P32)" _M(Nl Al (N5 = ny)!

<. Hl Hﬂdvs,.exp[—v,{zv}m (A1)

where p; is the number density of species i, § = 1/kzT and U{N} is the total energy of
the system with N particles. = is the grand canonical partition function expressed as

* AN 2P
E= Zmﬁ—'f...fﬂﬂdv exp[— U {N}B]. (A2)
N=0 V1 V! i=1s;
In equations (A1) and (A2) z; is the activity of species i defined by

. ___expluifl
T W)

where y; is the chemical potential of species i with mass m;, and 4 is Planck’s constant,

(A3)
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C0n51der1ng g‘m'nz‘ to be a function of V, §, fu, and Bu,, the differentiation of
g‘,ll‘,,z‘ by the number density of species 1, p;, at constant volume leads to the following
form

(n) (n) (n)
08 1n1jns| _ aglﬂﬂnz\ dBu, ag\"lfnz\ 0fBu, (Ad)
1 lpvp, OB gg, 0Pt lgy,,  OPUa g4, 001 5y,
Using the Gibbs-Duhem relation equation (A4) can be rewritten as
(n) (n) (n)
ag\ﬂllﬂz\ dBu, 1 0&njny 1 98jnylny A5
=, ), (A3)
apl B.V,p2 apl B8.V.,02 P2 aﬁ#z B.Bu1 P1 ﬁ“l B.Bux

In equation (AS), the derivative of g;(:,l)l‘,,z‘ by fu; (i = 1 or 2) can be written as

% _ agﬂ(r’tli!nz“ 9z;
Bui 15y iy ez pv.izy OBM gy gy
2
=n, 8;n11n21 E ni(6; + PzG,z)g,m]nz; + p; den +l(g\(::)—r}2h g;(:imzi
(A6)
with
Gy = [ dRey[8 (R~ 1) (A7)

In these equations, the subscript {Su;}' (or {z;}') indicates that the differentiation by By,
(or z;) should be performed at constant values of set {8u;} (or {z;}) except for Bu; (or z,).
The dV,,; indicates the volume element of space coordinates of the (n; + 1)th ion of
species £, and R ,, in g” (R S0 |) is equal to R ¢~ R, where R, indicates the position
vector of the §,th ion of species j. The symbol Inllnzfz indicates \nl + 1|n, if i =1 and
Inln, + 1] ifi = 2.

On the other hand, the derivative of p, has been obtained by Buff and Brout (1955)
as follows:

9p;
Bty

Substitution of equations (A6) and (A8) into (AS) leads to

(n)
(NA/V)Pan

ag(nllnz\ -
901 g v.p, (1+p01G ) + p2Gy) — pi1p2Gh

=p;0y +Pkpij[gki(‘Ryw,") —~1] dR:/ka,'- (A8)
BV, {Buwt

Udvn1+1{g\nl+1yn21 ny(g® — 38t

2)
= [ AVilgli = mae® - 8l (49)

where g,(: I‘,,z‘ is constant in these integrals.
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Moreover, using the relation between the mole number ¢, and the number density
p1(c; = p,V/N,), equation (A9) can be rewritten as the mole number derivative of

gz as follows:

) o)
08 nyln,| _ 98ininy
acl B.V.co 5,01

_ Na 98y
V. ap;

90

A10
™ (A10)

8.V.p2 BV B.V.p2

where N, is Avogadro’s number. In the text, the discussion was made on the basis of
equation (A10).
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